Conformal Prediction Sets Improve Human Decision Making

Published in International Conference on Machine Learning 2024, 2024

Recommended citation: Jesse C. Cresswell, Yi Sui, Bhargava Kumar, and Noël Vouitsis. Conformal Prediction Sets Improve Human Decision Making. International Conference on Machine Learning 2024

In response to everyday queries, humans explicitly signal uncertainty and offer alternative answers when they are unsure. Machine learning models that output calibrated prediction sets through conformal prediction mimic this human behaviour; larger sets signal greater uncertainty while providing alternatives. In this work, we study the usefulness of conformal prediction sets as an aid for human decision making by conducting a pre-registered randomized controlled trial with conformal prediction sets provided to human subjects. With statistical significance, we find that when humans are given conformal prediction sets their accuracy on tasks improves compared to fixed-size prediction sets with the same coverage guarantee.

[Paper] [PDF] [Code]