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Fast Calorimeter Simulation Challenge 2022

LHC experiments require simulations of how particles interact with
detectors, but physics-based simulations of calorimeter showers are slow.

Challenge: train a surrogate model that can generate realistic showers
quickly and from the correct distribution.

Deep generative models trained on shower data can learn the distribution of
showers, and enable fast sampling.
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Manifold Hypothesis

The Manifold Hypothesis states that high-dimensional real-world data is
supported on a low-dimensional embedded submanifoldM ⊂ RD.
(Bengio, Courville, Vincent; IEEE TPAMI 2013)

EM calorimeter showers are highly structured.
Constraints of QED processes Ô⇒ shower data has manifold structure.

Hence, the target distribution P∗ is supported onM, not RD.

What happens when we try to model P∗ with a DGM that learns a density
pθ(x) on RD?

Jesse Cresswell (Layer 6 AI) Density estimation on learned manifolds Dec. 3, 2022 3 / 8



Maximum likelihood estimation can fail when the dimensionalities of pθ(x)
and P∗ differ. Manifold overfitting can occur whereM is learned but not
the distribution P∗ on it. (Loaiza-Ganem, Ross, Cresswell, Caterini; TMLR 2022)

To maximize the likelihood of the data, the density is sent to infinity around
M, whereM is a set of measure zero wrt Lebesgue measure.

This does not happen when pθ(x) and P∗ have the same dimensionality
because pθ(x) must remain normalized.
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The simple solution is a two-step approach: first learn the data manifold,
then estimate the distribution on it.

1) LearnM with a generalized autoencoder - any model that constructs a
low-dimensional encoding z = g(x), and can reconstruct data with a
decoder x = G(z).

2) Perform density estimation on the manifold, obtaining the
low-dimensional density p(z).
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Calorimeter Shower Manifolds

Use a statistical estimator of intrinsic dimension (Levina & Bickel; NeurIPS 2004)
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Tk(xi) - Euclidean distance between xi and its kth nearest neighbour.
k - scale at which the manifold is probed.

Photon dataset showers
have 368 voxels, but d̂10 = 20.
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Photon Dataset - Results

1) VAE parameterizes the encoder and decoder as MLP networks with
3 hidden layers of 512 units - output the parameters of diagonal Gaussians
in 20-dimensional latent space.

2) NF trained on 20-dimensional latent space is a 4-layer rational-quadratic
neural spline flow.

Comparison of histograms between test set, and generated samples:
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Conclusion

Calorimeter showers have low-dimensional structure dictated by physics.

Learning the manifold, then estimating the density on it is a more
principled approach that avoids manifold overfitting.

Two-step models reduce dimension, so that training and sampling are
extremely fast compared to full-dimensional models.

Learning topologically non-trivial manifolds without prior knowledge is also
possible (Ross, Loaiza-Ganem, Caterini, Cresswell; 2206.11267).
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